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It has been shown in the RB-71-35 that Gaussian quadrature sup-
plemented by a Newton-Raphson iteration technique is an-effective method
of calculation of thes Bivariate Normal (Tetrachoric) r . Subsequent studies
made it apparent that significant improvements could easily be incorporated
into the calculation with relatively little increase in complexity, or cost,
of the computational technique. These improvements are discussed in this

- supplement.

1. Estimates of the standard deviates h and k
The value of k may be written in the form

X

-

: 1k 5
o (k) = ¢§F.f0 e dx

where, in the notation of the original paper, ¢ (k) is equivalent to .5
minus the marginal percentage, ql. In the original model, Hastings' approx~
imation without any modification was used to estimate k, although a remark

was made that the result could be improved by an iteration technique.

It is apparent from this form of the integral thét we are faced with
precisely the same problem as in our evaluation of r , namély, we must
compute (or estimate) alvariable upper limit of a definite integral. Thera
is no reason, therefore, not to use the same algorithmic technique, i.e.,
Gaussign quadrature and Newton-Raphson iteration, to improve Hastings' esti~
mates. This seems even more feasible when one fealizes the necessary calculation
ingredients, the Gaussian quadrature coefficients, the related weights, and

the iteration structure are already available for the evaluation of r .




2., The Gaussian Quadrature.

The 5-point quadrature used in the original study was quite rapid
and gave acceptable values except where the joint and marginal values were
close. However, an increase of only 3 points to an 8-point quadrature
resulted in the convergence of many values which previously had failed.

This increased accuracy is impor .t not only in the evaluation of the
final r dintegral, but of equal and perhaps greater benefit in establishing
more aCCuraté values of the h and k parameters which make up the function.

Consider the following table:

Different Quadrature Effects on h and k Calculation

h Hastings' 5~Point Quadrature 8-Point Quadrature
Area true | Estimate — -
. Unmodified Value Iterations Value Iterations
.5 o |-1.01-1077 | -.3-10713 1 -.4-10713 1
.158655254 1 .999968 | 1.0000004 2 1.0000002 2
.022750132 2 2.000435 2.000002 2 2.000001 2
.001349898 3 3.000314 | 3.00022 2 2.999990 2

Thus, a substantial improvement in the values of h and k is achieved with

only two iterations.

3. The Starting Estimate
In accordance with the above improvements, two terms of the series
expansion were used instead of one, and the resulting quadratic equation im
r solved to prbvide a better starting estimate. Extreme valués again caused
this estimate .to exceed 1, consegueptly it was necessary to set limiting
values as was done previously. Again, noioné value seemed to assure convergence
over the entire range of r . For example,.a'P value of .001131 (kb = 2, k = 3,

r = .80) failed to converge with a starting estimate of .97 but converged to
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.8003 readily with a lower value. On the other hand, a P value of .477473
(h =0, k=0, r = .99) failed with a starting estimate of .90 but con-~
verged in 5 iterations to .99096 with a starting estimate of .97. On the
assumption that the majority of r calculaticns will be within the range
- .80 < r < .80 and only occasionally near the extreme values which tend
to give the most computational difficulty, the bounds were set at + .80
with a final pass using + .97 if the first fails to converge. Fairly

extensive testing has resulted in the convergence of all "reasonable"

values by this method.

4. The Convergence Criteria
Two convergence values were used in the attached examples:
1-10.'5 for both h and k calculations and 1'10-4 for the r calculation.

The effect of these values is, of course, evident in the above table.

N

Summary

Three versions of ** . 7 rithm ~.@ thus Tead.., availab.c for use:
1) 5-point quadrature, unmodified Hastings' estimates of h and k.

2) S5-point quadrature, improved estimates of h and k.

5 &-point q&adrature, improved estimates of h and k.

Jhe =zttached sheet of compuﬁer output indicates the range of values for
the 8-point quadrature. An average calculation for the 8-poirt Juadrature
requfrad .027 seconds per computed value of r vs. .020 for a 5-point
qﬁadracure. On 50 x %0 matrix of "live" dafa an average r T=uired .018
seconis using 8~point quadrature ;ompared with .0135 seconds f>: 5 points.

The stability of the higher quadrature seems to justify its wse.
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